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Abstract 1 

 2 

The analysis of gene expression data generated by high-throughput microarray transcript 3 

profiling experiments has shown that transcriptionally coordinated genes are often functionally 4 

related. Based on large-scale expression compendia grouping multiple experiments, this guilt-by-5 

association principle has been applied to study modular gene programs, identify cis-regulatory 6 

elements, or predict functions for unknown genes in different model plants. Recently, several studies 7 

have demonstrated how, through the integration of gene homology and expression information, 8 

correlated gene expression patterns can be compared between species. The incorporation of detailed 9 

functional annotations as well as experimental data describing protein-protein interactions, 10 

phenotypes or tissue specific expression, provides an invaluable source of information to identify 11 

conserved gene modules and translate biological knowledge from model organisms to crops. In this 12 

review, we describe the different steps required to systematically compare expression data across 13 

species. Apart from the technical challenges to compute and display expression networks from multiple 14 

species, some future applications of plant comparative transcriptomics are highlighted. 15 
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 3 

 Introduction 1 

 2 

Comparative sequence analysis is a successful tool to study homologous gene families (genes 3 

sharing common ancestry), define conserved gene functions between orthologs (homologs separated 4 

by a speciation event), and identify lineage- and species-specific genes. Most annotations of newly 5 

sequenced genomes are based on similarity with sequences for which functional information is 6 

available. Apart from conserved sequences, inter-species differences provide important clues about 7 

evolutionary history and species-specific adaptations (Hardison, 2003). Accelerated by technological 8 

innovations, genome-wide data describing functional properties including gene expression, protein-9 

protein interactions and protein-DNA interactions is becoming available for an increasing number of 10 

model organisms. Consequently, the integration of functional genomics information provides, apart 11 

from gene sequence data, an additional layer of information to study gene function and regulation 12 

across species (Tirosh, Bilu & Barkai, 2007).  13 

Depending on the availability of expression profiling technologies and the evolutionary 14 

distances between the species under investigation, a number of different approaches can be applied 15 

to study expression profiles between organisms (Lu, Huggins & Bar-Joseph, 2009). The hybridization 16 

of samples from closely related species to the same microarray requires compatible experimental 17 

conditions and has been first used in studies comparing different Brassicaceae species (Gong, Li, Ma, 18 

Indu Rupassara & Bohnert, 2005, Hammond, Broadley, Craigon, Higgins, Emmerson, Townsend, 19 

White & May, 2005, Taji, Seki, Satou, Sakurai, Kobayashi, Ishiyama, Narusaka, Narusaka, Zhu & 20 

Shinozaki, 2004, Weber, Harada, Vess, Roepenack-Lahaye & Clemens, 2004). To monitor specific 21 

responses between more distantly related species, multiple microarray experiments are combined to 22 

first identify differentially expressed (DE) genes in each species independently, and then compare 23 

these genes among different species. Downstream comparative sequence analysis of DE genes 24 

between different species or kingdoms makes it possible to identify evolutionary conserved 25 

responsive gene families as well as species-specific components. In addition, unknown genes 26 

showing a conserved response shared between multiple species are interesting targets for detailed 27 

molecular characterization (Vandenbroucke, Robbens, Vandepoele, Inze, Van de Peer & Van 28 

Breusegem, 2008). Similarly, Mustroph and co-workers successfully applied a comparative meta-29 

analysis of low-oxygen stress responses to identify several unknown plant-specific hypoxia 30 

responsive genes (Mustroph, Lee, Oosumi, Zanetti, Yang, Ma, Yaghoubi-Masihi, Fukao & Bailey-31 

Serres, 2010). More recently, microarray data sets were integrated to study orthologs and specific 32 

biological processes between more distantly related plant species, including Arabidopsis thaliana 33 

(Arabidopsis), Oryza sativa (rice) and Populus (poplar). Two pioneering studies, comparing microarray 34 

expression profiles between Arabidopsis and rice, focused on conservation and divergence of light 35 



 4 

regulation during seedling development and the analysis of global transcriptomes from 1 

representative organ types between both plant model systems (Jiao, Ma, Strickland & Deng, 2005, 2 

Ma, Chen, Liu, Jiao, Su, Li, Wang, Cao, Sun, Zhang, Bao, Li, Pedersen, Bolund, Zhao, Yuan, Wong, 3 

Wang & Deng, 2005). Similarly, Street and co-workers identified several transcription factors involved 4 

in leaf development based on cross-species expression analysis of orthologous genes between 5 

Arabidopsis and poplar (Street, Sjodin, Bylesjo, Gustafsson, Trygg & Jansson, 2008).  6 

Although comparative expression analysis is most straightforward when compatible 7 

expression data sets are used that cover equivalent conditions for all species, only a small fraction of 8 

all available data in different species can be utilized in this approach (Tirosh et al., 2007). To 9 

overcome these limitations, pioneering comparative transcriptomics studies have shown that 10 

comparing co-expression, instead of the raw expression values, provides a valid alternative to 11 

identify gene modules (set of co-expressed genes potentially sharing similar function and regulation) 12 

and study their evolution (Bergmann, Ihmels & Barkai, 2004, Stuart, Segal, Koller & Kim, 2003). Stuart 13 

and colleagues developed a computational approach to identify conserved biological functions in 14 

different species by looking for correlated patterns of gene expression in microarrays from humans, 15 

fruit flies, worms, and yeast (Stuart et al., 2003). Similarly, the integration of genome-wide 16 

expression data was used to study the modular architecture of regulatory programs in six 17 

evolutionary distant organisms (Bergmann et al., 2004). 18 

In this manuscript we give an overview of the different steps to systematically compare 19 

microarray expression data across species based on recent comparative transcriptomics studies in 20 

plants. Apart from the retrieval, normalization and annotation of microarray expression information, 21 

challenges related to the detection of co-expressed genes, the accurate delineation of gene 22 

orthology and the integration of expression networks and homology data are highlighted. Two case 23 

studies are presented demonstrating how conserved co-expression can be used to functionally 24 

annotate genes and to discriminate between co-orthologs with varying levels of expression 25 

conservation. Finally, we discuss some properties of conserved expression modules in plants and 26 

highlight some future applications. 27 

 28 

 29 

Processing and integration of plant expression data 30 

 31 

Gene expression profiling of different samples reveals whether genes are transcriptionally 32 

induced or repressed as a reaction to a certain treatment, disease, or at different developmental 33 

stages. Consequently, it is a powerful tool for target discovery, disease classification, pathway 34 

analysis and monitoring of biotic or abiotic responses. Among different available microarray 35 
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technologies, such as Affymetrix, Agilent  and Roche/NimbleGen, the Affymetrix GeneChip is one of  1 

the most popular platforms to quantify steady-state transcript abundances (shortly, gene 2 

expression). On Affymetrix oligonucleotide microarrays, tens of thousands of probes, typically 3 

covering 25nt, are attached to a solid surface. Other microarray platforms, like Agilent, use only a 4 

few but longer probes to measure expression of a specific gene (Hardiman, 2004). After sample 5 

preparation, the outcome of the probe-target hybridization is quantified and intensity values of each 6 

cell (feature) are saved in a CEL file for a specific experiment. Apart from the expression values, 7 

standardized descriptions of experimental conditions and protocols are stored using the 8 

MIAME/Plant standard to facilitate data sharing (Zimmermann, Schildknecht, Craigon, Garcia-9 

Hernandez, Gruissem, May, Mukherjee, Parkinson, Rhee, Wagner & Hennig, 2006). A detailed 10 

description of various experimental parameters is essential if, in a later stage, the identification of 11 

compatible experimental conditions across species is required.  Repositories like Gene Expression 12 

Omnibus (GEO) (Barrett & Edgar, 2006) or ArrayExpress (Parkinson, Sarkans, Kolesnikov, 13 

Abeygunawardena, Burdett, Dylag, Emam, Farne, Hastings, Holloway, Kurbatova, Lukk, Malone, 14 

Mani, Pilicheva, Rustici, Sharma, Williams, Adamusiak, Brandizi, Sklyar & Brazma, 2011) are public 15 

microarray archives and provide thousands of expression profiling studies (Figure 1). All available 16 

microarray data for a specific organism, mostly focusing on an individual platform, are frequently 17 

combined to build large-scale expression compendia (see for example PLEXdb (Wise, Caldo, Hong, 18 

Shen, Cannon & Dickerson, 2007)) which summarize expression profiles in tens or hundreds of 19 

different conditions (Fierro, Vandenbussche, Engelen, Van de Peer & Marchal, 2008). For each 20 

experiment, the CEL files are retrieved and subsequently processed using a Chip Description File 21 

(CDF) in order to obtain a raw intensity value per gene. A CDF file describes probe locations and 22 

probeset groupings on the chip. During microarray analysis, mostly performed using algorithms such 23 

as MAS5 (Affymetrix proprietary method) or RMA/GCRMA (Irizarry, Hobbs, Collin, Beazer-Barclay, 24 

Antonellis, Scherf & Speed, 2003), intensity values of individual probes are summarized for a 25 

probeset, typically representing a specific locus, gene or transcript. The final expression data set is a 26 

matrix of genes (rows) and conditions (columns), which is background-corrected, normalized and 27 

finally summarized (Quackenbush, 2002).  28 

In contrast to gene-based arrays, tiling arrays contain a large number of probes that cover a 29 

complete chromosome or genome and can be used, apart from standard expression profiling, for 30 

various applications including the detection of novel transcripts, chromatin immunoprecipitation of 31 

transcription factor protein-DNA interactions, profiling of epigenetic modifications, or the detection 32 

of DNA polymorphisms (Gregory, Yazaki & Ecker, 2008). Although repeat sequences can interfere 33 

with the reliable measurement of genome-wide expression, high-density tiling arrays are 34 

independent of known gene annotations and therefore provide an unbiased approach for different 35 
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profiling studies. This is in contrast with the GeneChip platform, which measures the expression of a 1 

given sequence (i.e. gene or transcript) using multiple probes grouped in a probeset (see Supporting 2 

Information, Note I). 3 

According to a survey executed on November 2011, there were thirteen Affymetrix GeneChip 4 

microarray platforms publicly available in the NCBI GEO database for different plants (eight dicots 5 

and five monocots, see Figure 1). The number of CEL files available for these species varies a lot, from 6 

only twenty for sugar cane (Sacharum officinarum) to more than 7000 for Arabidopsis. Apart from a 7 

developmental plant expression atlas generated for Arabidopsis (Schmid, Davison, Henz, Pape, 8 

Demar, Vingron, Scholkopf, Weigel & Lohmann, 2005), large-scale expression compendia have been 9 

constructed, using a variety of platforms, for other species as well. Examples include barley 10 

(Hordeum vulgare) (Druka, Muehlbauer, Druka, Caldo, Baumann, Rostoks, Schreiber, Wise, Close, 11 

Kleinhofs, Graner, Schulman, Langridge, Sato, Hayes, McNicol, Marshall & Waugh, 2006), Medicago 12 

(Medicago truncatula) (Benedito, Torres-Jerez, Murray, Andriankaja, Allen, Kakar, Wandrey, Verdier, 13 

Zuber, Ott, Moreau, Niebel, Frickey, Weiller, He, Dai, Zhao, Tang & Udvardi, 2008), rice (Jiao, Tausta, 14 

Gandotra, Sun, Liu, Clay, Ceserani, Chen, Ma, Holford, Zhang, Zhao, Deng & Nelson, 2009, Wang, Xie, 15 

Chen, Tang, Yang, Ye, Liu, Lin, Xu, Xiao & Zhang, 2010), tobacco (Nicotiana tabacum) (Edwards, 16 

Bombarely, Story, Allen, Mueller, Coates & Jones, 2010) and soybean (Glycine max) (Libault, Farmer, 17 

Joshi, Takahashi, Langley, Franklin, He, Xu, May & Stacey, 2010). Although many plant expression 18 

studies integrated all available expression data, in some cases condition-dependent or pre-defined 19 

expression compendia focusing on specific developmental stages, tissues or stress conditions have 20 

been generated to study specific gene functions (De Bodt, Carvajal, Hollunder, Van den Cruyce, 21 

Movahedi & Inze, 2010, Usadel, Obayashi, Mutwil, Giorgi, Bassel, Tanimoto, Chow, Steinhauser, 22 

Persson & Provart, 2009a). Additional procedures can be applied to remove low-quality samples or to 23 

remove samples that could generate biases within the final compendium (Table 1). The latter is 24 

typically achieved by applying a statistical selection procedure to only select independent conditions 25 

or, reversely, by first grouping similar conditions and only retaining a single experiment as a 26 

representative for a set of related microarray conditions (Movahedi, Van de Peer & Vandepoele, 27 

2011, Mutwil, Klie, Tohge, Giorgi, Wilkins, Campbell, Fernie, Usadel, Nikoloski & Persson, 2011). 28 

Although these selection procedures allow for the detection of specific conditions providing new 29 

expression information compared to the samples already included in the compendium, the number 30 

of genes that can be reliable measured through a specific microarray platform also provides an 31 

important parameter when compiling expression compendia. As for some species the number of 32 

genes that can be measured using a microarray differs substantially from the number of annotated 33 

genes in the genome (Mutwil et al., 2011), missing genes provide an important drawback for many 34 

microarray-based co-expression tools (see for example Figure 3B).  35 
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 1 

Detection of gene clusters and construction of co-expression networks 2 

 3 

In order to compare genome-wide expression profiles between different species, most 4 

studies apply a clustering algorithm to search, based on a large-scale expression compendium, for 5 

groups of highly co-expressed genes per species (Figure 2). The idea of clustering is to study groups 6 

of genes, sharing similar expression patterns, instead of individual ones. There are many different 7 

gene expression clustering tools available and each has its own advantages and disadvantages. Most 8 

clustering methods apply a similarity or a distance measure together with other parameters such as 9 

the number of clusters, the minimum/maximum cluster size or a quality measure to construct gene 10 

co-expression clusters (Xu & Wunsch, 2005). Overall, it is not easy to do a fair evaluation of how well 11 

an  algorithm will perform on typical expression data sets, and under which circumstances one 12 

algorithm should be preferred over another (D'Haeseleer, 2005, Usadel et al., 2009a).  13 

Two of the most commonly used similarity measures for gene expression data are Euclidean 14 

distance and Pearson correlation coefficient (PCC). Other examples of measures that have been 15 

applied in comparative plants co-expression studies are cosine and Spearman’s correlation 16 

coefficient (Table 1). To identify clusters of genes showing expression similarity, very simple as well 17 

as complex graph-based clustering algorithms have been developed. The most simple methods rank, 18 

for a selected gene, all other genes based on a similarity measure (e.g. descending PCC values) and 19 

then select a predefined number of top best ranked genes. Alternatively, gene selection can also be 20 

applied by retaining all genes with a PCC value above a pre-defined threshold. Mutual ranks, defined 21 

as the geometrical average of the correlation ranks, are frequently applied to keep weak but 22 

significant gene co-expression relationships which would not be retained when applying a fixed 23 

absolute similarity threshold. A derivative, the highest reciprocal rank (HRR), considers the maximum 24 

rank for a pair of genes (Table 1). Application of these rank-based gene selection criteria are 25 

frequently used as a simple and fast substitute for more complex clustering algorithms since they 26 

generate a set of co-expressed genes for each query gene (i.e. gene-centric clustering, see Figure 2). 27 

In this case, the number of co-expression clusters is close or equal to the number of genes available 28 

in the expression data set and clusters are potentially overlapping on a genome-wide scale.  29 

Apart from simple rank-based gene-centric clustering approaches, more advanced algorithms 30 

apply graph-theory to find groups of genes showing similar expression profiles. In general, a 31 

weighted graph of genes (nodes) is constructed where each pair of genes is connected by an edge 32 

and the edge weight is defined by the expression similarity between the genes. Graph-based 33 

clustering tools try to identify highly connected nodes (sub-graphs) in this expression network 34 

representing gene expression clusters. Whereas clique finders isolate fully connected sub-graphs, 35 
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other tools apply a variety of heuristic or statistical methods to find gene clusters. This can be done 1 

by considering only the first neighbors of a query (or seed) gene or all nodes within n steps away 2 

from the query gene (Node Vicinity Network, NVN). CAST (Cluster Affinity Search Technique) (Ben-3 

Dor, Shamir & Yakhini, 1999, Vandepoele, Quimbaya, Casneuf, De Veylder & Van de Peer, 2009), the 4 

Confeito algorithm (Ogata, Sakurai, Suzuki, Aoki, Saito & Shibata, 2009), Weighted Gene Co-5 

expression Network Analysis (WGCNA) (Langfelder & Horvath, 2008), Random Matrix Theory (RMT) 6 

(Luo, Yang, Zhong, Gao, Khan, Thompson & Zhou, 2007) and Heuristic Cluster Chiseling Algorithm 7 

(HCCA) (Mutwil, Usadel, Schutte, Loraine, Ebenhoh & Persson, 2010) are examples of graph-based 8 

algorithms which have been applied for defining gene co-expression clusters in plants (Table 1).  9 

 10 

 11 

Comparing co-expression networks across species 12 

 13 

A major objective in comparative expression studies is the systematic comparison of gene 14 

clusters across species using homologous or orthologous genes. Defining sequence-based orthologs 15 

is a powerful approach to link expression datasets across species (Table 1) and to identify genes with 16 

conserved gene functions or conserved modules that participate in similar biological processes 17 

(Bergmann et al., 2004, Lu et al., 2009, Stuart et al., 2003). Although different approaches are 18 

available to identify homologous and orthologous genes (Koonin, 2005), most of them start from the 19 

output of a global all-against-all sequence similarity search. Whereas NCBI HomoloGene defines 20 

homologous genes in completely sequenced eukaryotic genomes (Sayers, Barrett, Benson, Bolton, 21 

Bryant, Canese, Chetvernin, Church, DiCuccio, Federhen, Feolo, Fingerman, Geer, Helmberg, 22 

Kapustin, Landsman, Lipman, Lu, Madden, Madej, Maglott, Marchler-Bauer, Miller, Mizrachi, Ostell, 23 

Panchenko, Phan, Pruitt, Schuler, Sequeira, Sherry, Shumway, Sirotkin, Slotta, Souvorov, Starchenko, 24 

Tatusova, Wagner, Wang, Wilbur, Yaschenko & Ye, 2011), the PFAM database provides information 25 

about conserved protein domains and families (Finn, Mistry, Tate, Coggill, Heger, Pollington, Gavin, 26 

Gunasekaran, Ceric, Forslund, Holm, Sonnhammer, Eddy & Bateman, 2010). Although reciprocal best 27 

hits (RBH) provide a practical solution to identify orthologs between closely related species, 28 

OrthoMCL and Inparanoid (Li, Stoeckert & Roos, 2003, Ostlund, Schmitt, Forslund, Kostler, Messina, 29 

Roopra, Frings & Sonnhammer) are more advanced methods to construct orthologous groups across 30 

genomes because they model, apart from orthology through RBH, also inparalogy (gene duplication 31 

events post-dating speciation). Consequently, species-specific gene family expansions are correctly 32 

represented in OrthoMCL orthologous groups while RBH approaches only retain a single gene as 33 

ortholog (excluding other inparalogs). In the latter case it is possible that erroneous conclusions 34 

about gene family expression evolution are drawn, especially if the expression profiles of the 35 
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inparalogs (or co-orthologs) have diverged. Whereas Inparanoid identifies orthologs and inparalogs 1 

in a pairwise manner, OrthoMCL can delineate orthologous clusters between multiple genomes in a 2 

single run. A detailed comparison of plants orthologs from multiple species revealed that 70-90% of 3 

OrthoMCL families could be confirmed by phylogenetic tree construction (Proost, Van Bel, Sterck, 4 

Billiau, Van Parys, Van de Peer & Vandepoele, 2009). Although phylogeny-based orthology 5 

predictions are available in a number of plant comparative genomics resources (Martinez, 2011), 6 

sequence similarity clustering methods are less computer intensive and more easily applicable. 7 

However, simple sequence similarity approaches have a higher risk of missing genes involved in 8 

complex many-to-many orthology relationships between more distantly related species (Kuzniar, van 9 

Ham, Pongor & Leunissen, 2008, Proost et al., 2009, Van Bel, Proost, Wischnitzki, Movahedi, 10 

Scheerlinck, Van de Peer & Vandepoele, 2012). Reversely, protein domain-based methods might 11 

assign false orthology relationships between multi-domain protein coding genes that are only 12 

distantly related based on the presence of single frequently occurring domain (e.g. ankyrin repeat, 13 

WD40, F-box). Tools like CoGe or PLAZA provide synteny information to delineate putative orthologs 14 

(Lyons, Pedersen, Kane, Alam, Ming, Tang, Wang, Bowers, Paterson, Lisch & Freeling, 2008, Van Bel 15 

et al., 2012), with the latter applying an ensemble approach to integrate results from different 16 

methods when searching for orthologous genes (PLAZA Integrative Orthology approach). 17 

So far, most comparative expression analyses have combined gene expression clusters per 18 

species with homology information to identify conserved gene expression (Table 1). Examples in 19 

plants include Co-expressed biological Processes (CoP) (Ogata, Suzuki, Sakurai & Shibata, 2010), 20 

Expression Context Conservation (ECC) (Movahedi et al., 2011), Plant Network (PLaNet) (Mutwil et 21 

al., 2011) and STARNET2 (Jupiter, Chen & VanBuren, 2009) (Table 1). Although the CoP database 22 

simply provides a list of co-expressed genes in the other species starting from an individual query 23 

gene, the other tools include gene homology information to filter the co-expression information from 24 

the different species (see blue dashed lines in Figure 2). Gene expression is typically compared 25 

between species in a pairwise manner and, optionally, information about conserved genes in 26 

multiple species is combined (Mutwil et al., 2011). Although this approach provides a first glimpse on 27 

the co-expressed genes that are conserved between different species (Humphry, Bednarek, 28 

Kemmerling, Koh, Stein, Gobel, Stuber, Pislewska-Bednarek, Loraine, Schulze-Lefert, Somerville & 29 

Panstruga, 2010), recently developed methods also apply statistical tests to verify if the number of 30 

shared orthologs between two expression clusters is significant (Chikina & Troyanskaya, 2011, 31 

Movahedi et al., 2011, Mutwil et al., 2011, Zarrineh, Fierro, Sanchez-Rodriguez, De Moor, Engelen & 32 

Marchal, 2011). Since most approaches use gene homology or orthology information to connect co-33 

expression networks between different species, larger co-expression clusters will logically also yield a 34 

higher number of shared orthologs. Similarly, for genes involved in many-to-many orthology 35 
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relationships, the probability to have shared orthologs between co-expression clusters is also higher 1 

compared to small families with one-to-one orthology relationships.  As shown in Figure S2, the 2 

application of a statistical significance test can be used to objectively define if, based on the gene co-3 

expression cluster sizes and homologous genes or families, the number of shared orthologs is 4 

significantly higher than expected by chance. In comparative studies where the homologous genes 5 

from the different species can be classified using one-to-one orthology, the hypergeometric 6 

distribution and Pearson’s chi-square test have been used to estimate if the number of shared 7 

orthologs is significant (Chikina & Troyanskaya, 2011, Zarrineh et al., 2011). However, for species 8 

with many multi-gene families like plants (Vandepoele & Van de Peer, 2005), the application of 9 

empirical significance testing using a permutation test provides a more reliable alternative as the 10 

probability of finding shared orthologs between two expression clusters differs for genes belonging 11 

to families with different sizes. To the best of our knowledge, only PLANET and ECC applied a 12 

statistical evaluation taking into consideration different gene family sizes (Table 1), the latter 13 

including different null models to reliably estimate the significance levels of conserved co-expression 14 

controlling for network properties such as connectivity (i.e. the degree distribution of co-expressed 15 

genes within the network) or tissue specificity (Movahedi et al., 2011). As a consequence, these 16 

models correct for specific expression breadth biases that might exist in co-expression clusters for 17 

certain genes when performing statistical evaluation. 18 

To determine the most optimal conserved co-expression module, the recently developed 19 

COMODO method uses a cross-species co-clustering approach that simultaneously evaluates the 20 

homology relations and the extension of co-expression seed modules. Starting from seeds in each 21 

species, these seed modules are gradually expanded (by addition of co-expressed genes ranked using 22 

PCC similarity information) in each of the species until a pair of modules is found for which the 23 

number of shared orthologs is statistically optimal (Zarrineh et al., 2011). Although this approach 24 

explores the two-dimensional parameter landscape (Figure S2) to find the best co-expression module 25 

definition, it is still required to pre-specify a co-expression stringency value for seed identification. 26 

Complementary to two-step approaches which first define expression clusters and then 27 

filters co-expressed edges in the networks using gene homology information, Ficklin and Feltus 28 

(Ficklin & Feltus, 2011) used a global network alignment approach to combine the co-expression 29 

topology and homology information and to delineate conserved modules. Although this approach 30 

successfully identified several conserved modules between rice and maize, the applied method did 31 

not include a statistical evaluation of the conserved sub-graphs. 32 

 33 

 34 

Functional annotation and network visualization 35 
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 1 

 To study the biological processes behind conserved co-expression modules, different 2 

functional annotation systems as well as experimental data have been used. Although several studies 3 

relied on Gene Ontology (GO) annotations to identify enriched gene functions within conserved 4 

modules, information from KEGG pathways (Kanehisa, Goto, Furumichi, Tanabe & Hirakawa, 2010), 5 

Reactome (Tsesmetzis, Couchman, Higgins, Smith, Doonan, Seifert, Schmidt, Vastrik, Birney, Wu, 6 

D'Eustachio, Stein, Morris, Bevan & Walsh, 2008) or MapMan (Usadel, Poree, Nagel, Lohse, Czedik-7 

Eysenberg & Stitt, 2009b) has also been exploited (Table 1). Gene annotation enrichment analysis is a 8 

high-throughput strategy that increases the likelihood for investigators to identify biological 9 

processes most pertinent to their study, based on an underlying enrichment algorithm (Huang da, 10 

Sherman & Lempicki, 2009). The integration of known protein-protein interactions, tissue specific 11 

expression or phenotypic information from mutant lines provides an additional level of experimental 12 

information that has been used to characterize conserved modules (Ficklin & Feltus, 2011, Movahedi 13 

et al., 2011, Mutwil et al., 2011). 14 

Graphviz and Cytoscape (Smoot, Ono, Ruscheinski, Wang & Ideker, 2011) are frequently 15 

applied software tools to graphically integrate expression networks, homology information and 16 

functional annotations (Table 1). Typically, genes are depicted by nodes while different edge 17 

attributes are used to represent expression similarity and homology information within and between 18 

species (Figure 3A). Although functional information about individual genes can be displayed using 19 

node attributes based on color, shape or outline thickness, the wealth of GO, KEGG or MapMan 20 

functional categories as well as various experimental properties makes it difficult to summarize all 21 

information in one single view. Although filtering on specific gene functions or a GO biological 22 

process provides a practical solution to reduce network complexity, the construction of meta-23 

networks (also referred to as module or ontology networks) makes it possible to explore regulatory 24 

interactions between groups of functionally related genes rather than between individual genes 25 

(Table 1). Furthermore, meta-networks are an important instrument to identify regulatory 26 

interactions and cross-talk between different processes (Mutwil et al., 2011). 27 

Although both STARNET2 and PlaNet host a website where users can browse co-expression 28 

networks, only the latter can be used to successfully generate cross species networks due to missing 29 

rice HomoloGene information in STARNET2. Although Mohavedi et al. and Ficklin et al. published 30 

several examples of conserved co-expression modules between Arabidopsis-rice and rice-maize 31 

(Ficklin & Feltus, 2011, Movahedi et al., 2011), respectively, an online resource to browse these 32 

conserved modules is currently unavailable. The COP database displays small co-expression networks 33 

for individual genes but reports conserved orthologs between two co-expression clusters from 34 

different species in a textual manner. Clearly, it remains an important challenge to provide an 35 
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interactive web-browser application where, apart from the co-expression networks from multiple 1 

species, different functional annotations, phenotypes, protein-protein interactions, and complex 2 

orthology gene relationships can also be displayed. 3 

 4 

 5 

Studying conserved gene functions using comparative co-expression analysis 6 

 7 

To demonstrate the power of comparative co-expression methods to study gene functions 8 

across species, Figure 3A displays the result of a comparative transcriptomics analysis for the 9 

Arabidopsis gene ETG1 (AT2G40550). Whereas this gene was previously described as a conserved E2F 10 

target gene with unknown function (Vandepoele, Vlieghe, Florquin, Hennig, Beemster, Gruissem, Van 11 

de Peer, Inze & De Veylder, 2005), recent experimental work revealed it has an essential role in sister 12 

chromatin cohesion during DNA replication (Takahashi, Quimbaya, Schubert, Lammens, Vandepoele, 13 

Schubert, Matsui, Inze, Berx & De Veylder, 2010). To identify the biological role of ETG1 and verify 14 

whether it is part of a conserved co-expression module in plants, we first characterized the gene’s co-15 

expression context based on a general Arabidopsis expression compendium from CORNET (De Bodt 16 

et al., 2010). Retrieval of the 50 most co-expressed genes based on the PCC yielded a set of genes 17 

showing a strong GO enrichment towards ‘cellular DNA replication’ (90-fold enrichment, p-value 18 

1.33e-36). Enrichment analysis for known plant cis-regulatory elements using ATCOECIS (Vandepoele 19 

et al., 2009) yielded enrichment for the E2F binding site TTTCCCGC (18-fold enrichment, p-value 20 

1.41e-18), confirming that ETG1 is a putative E2F target gene. To explore whether this functional 21 

enrichment is evolutionary conserved, we first searched for ETG1 orthologs using the PLAZA 2.0 22 

Integrative Orthology Viewer in species for which microarray data is publicly available. Whereas 23 

poplar, maize and rice have one ETG1 ortholog (PT19G07260, ZM03G04050 and OS01G07260, 24 

respectively), two copies were found in soybean (GM04G39990 and GM06G14860). Next, for each 25 

species a general expression compendium was compiled using Affymetrix experiments from GEO and 26 

the top-50 co-expressed genes were isolated in these organisms as well. Finally, the number of 27 

shared orthologs between the different co-expression clusters was determined and the resulting 28 

conserved modules were delineated (Figure 3A). Based on the ETG1 Arabidopsis co-expression 29 

cluster, 9 and 13 orthologous genes were conserved with the co-expression clusters for poplar and 30 

rice, respectively. Whereas for both species the fraction of conserved orthologs is much higher than 31 

expected by chance (p-value <1e-5, see inset Figure 3A), the functions of these orthologs (MCM2-5, 32 

MCM7, RPA70B, RPA70D and POLA3) as well as the expression context conservation in both 33 

monocots and dicots lend support for the conserved role of ETG1 in DNA replication. Querying the 34 

CoP database for ETG1 reports a smaller number of co-expressed genes but confirms the functional 35 
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enrichment towards DNA replication as well as the shared orthologs MCM3, MCM6 and POL3A 1 

between Arabidopsis and rice. Whereas the PlaNet platform did not directly confirm the biological 2 

role of ETG1 in DNA replication based on the Arabidopsis co-expression cluster, the comparative 3 

analysis confirmed that up to ten known DNA replication genes showed conserved co-expression in 4 

other plants. Examples included multiple replication factors, two ribonucleotide reductases, PCNA, 5 

ORC2 and different DNA polymerase subunits.  6 

Based on the frequent nature of many-to-many gene orthology relationships in plants, 7 

mediated by large-scale duplication events (Van de Peer, Fawcett, Proost, Sterck & Vandepoele, 8 

2009), comparative transcriptomics also offers a practical solution to identify functional homologs in 9 

multi-gene families (Chikina & Troyanskaya, 2011). Apart from detecting conserved gene modules, 10 

the ECC method can also be applied to identify orthologs and inparalogs with conserved co-11 

expression between different species for which large-scale expression data is available.  For a set of 12 

21 ubiquitin-activating enzyme homologs from seven species (Figure 3B), the systematic examination 13 

of conserved co-expression between all family members makes it possible to explore whether 14 

duplicates show different conservation patterns. Application of the ECC method using the 50 most 15 

co-expressed genes revealed that, for those orthologs which have expression data, in poplar, 16 

Medicago, soybean, Arabidopsis and maize ECC patterns with orthologs from other species were 17 

different between inparalogs. This result reveals that for at least five species both co-orthologs with 18 

conserved and non-conserved co-expression contexts exist, making the transfer of biological 19 

information between different species challenging. 20 

  21 

 22 

Biological applications and future directions 23 

 24 

Hypothesis-driven gene discovery remains one of the most promising applications for co-25 

expression networks. Whereas this principle is not new in plant genomics (Usadel et al., 2009a), the 26 

analysis of expression networks between more distantly related species exploits the assumption that 27 

predicted gene-function associations that occur by chance within one organism will not be conserved 28 

in a multi-species data set. Indeed, several plant studies identified conserved expression modules 29 

related to photosynthesis, translation, cell cycle and DNA metabolism, both in dicots and monocots 30 

(Ficklin & Feltus, 2011, Movahedi et al., 2011, Mutwil et al., 2011). As a consequence, the analysis of 31 

conserved modules with enriched gene functions and the comparison of gene sets with enriched 32 

phenotypes provide an invaluable approach for biological gene discovery in model species and to 33 

translate new gene functions to species with agricultural or economical value. Reversely, the analysis 34 

of orthologous genes lacking expression conservation might reveal biological adaptations linking 35 
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genotype to phenotype (Tirosh et al., 2007). Based on the statistical evaluation of genes lacking 1 

shared orthologs between Arabidopsis and rice genes, Movahedi and co-workers reported that non-2 

conserved ECC genes involved in stress response and signal transduction could provide a connection 3 

between regulatory evolution and environmental adaptations (Movahedi et al., 2011).  4 

The integration of new experiments describing specific transcriptional responses or tissue 5 

specific expression will provide, apart from GO annotations, an important complementary source of 6 

functional information to annotate homologs and to transfer biological knowledge between species 7 

based on conserved gene modules,. Nevertheless, this would require that, for example using 8 

ontology-based experimental annotations (De Bodt et al., 2010, Jaiswal, Avraham, Ilic, Kellogg, 9 

McCouch, Pujar, Reiser, Rhee, Sachs, Schaeffer, Stein, Stevens, Vincent, Ware & Zapata, 2005), 10 

similar conditions in different species could easily be identified within public databases covering 11 

thousands of profiling experiments. The recently developed Expressolog Tree Viewer, part of the Bio-12 

Array Resource for Plant Biology website (http://bar.utoronto.ca/), demonstrates how in several 13 

cases equivalent conditions between different plants can be identified and how direct comparisons 14 

of expression profiles between homologous genes can be used to identify (co-)orthologs showing 15 

conserved spatial-temporal expression. Nevertheless, as divergence time and morphological 16 

differences between species increase (e.g. between monocotyledonous and eudicotyledonous 17 

plants), finding equivalent tissues becomes challenging. Consequently, and in contrast to co-18 

expression comparisons (Figure 3B), this setup only allows for a  limited number of conditions that 19 

can directly be compared across homologs of different species.  20 

The application of next-generation sequencing to quantify plant transcriptomes (RNA-Seq) 21 

will generate new opportunities to study and compare expression profiles between species (Figure 22 

1). For example, detailed comparisons of different alternative transcripts within a co-expression 23 

network context will provide important information about the biological processes different splicing 24 

variants are involved in. Furthermore, studying alternative transcript expression levels within a 25 

comparative framework will generate new insights into the evolution and functional significance of 26 

alternative splicing in plants. However, the development and application of robust data processing 27 

and normalization methods will be essential in order to combine RNA-Seq experiments with varying 28 

sequencing depths into uniform and comparable expression compendia (Tarazona, Garcia-Alcalde, 29 

Dopazo, Ferrer & Conesa, 2011). 30 

In conclusion, the rapid accumulation of genome-wide data describing both plant genome 31 

sequences and a variety of functional properties will require the continuous development of systems 32 

biology approaches as well as user-friendly databases to extract biological knowledge and exchange 33 

information between experimental and computational plant biologists. 34 

 35 
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Table 1. Overview of cross-species co-expression studies in plants.  1 

 2 
  STARNET2 CoP PlaNet Maize- rice ECC 

Species H. sapiens (human), R. norvegicus 

(rat), M. musculus (mouse), G. 

gallus (chicken),  D. rerio 

(zebrafish), D. melanogaster (fly), 

C.elegans (worm) , S. cerevisiae 

(baker's yeast), A. thaliana (thale 

cress), O. sativa (rice) 

A. thaliana, O. sativa, P. 

trichocarpa (poplar), G. max 

(soybean), T. aestivum (wheat), 

H. vulgare (barley), V. vinifera 

(grape), Z. mays (maize) 

A. thaliana, O. sativa, 

M.truncatula - M. sativa 

(Medicago), P. trichocarpa, 

G. max, T. aestivum, H. 

vulgare 

Z. mays, O. sativa A. thaliana, O. sativa 

Source of microarray data (1) GEO GEO, ArrayExpress GEO, ArrayExpress GEO GEO  

Sample bias filtering no no yes no yes 

Filtering low-quality samples no no yes(deleted residuals) yes (R/arrayQualityMetrics) no 

Microarray normalization (2) custom-made CDF + RMA MAS5 RMA RMA custom-made CDF + RMA 

Primary co-expression measure 

(3) 

PCC cosine correlation coefficient  Highest Reciprocal Rank 

(based on PCC) 

PCC PCC 

Clustering algorithm (4) gene-centric Confeito algorithm extracting 

highly interconnected sub-

graphs 

graph-based (NVN, HCCA) graph-based (WGCNA, RMT) gene-centric 

Gene homology detection NCBI HomoloGene Best hit orthologous gene 

(BLASTn) 

PFAM Reciprocal Best Hits OrthoMCL 

Cross-species expression 

analysis 

filtering homology links between 

co-expression clusters 

list of co-expressed genes in 

other species based on 

individual query gene 

filtering and quantification 

homology links between 

co-expression clusters 

network alignment (mixed co-

expression topology and 

homology; IsoRankN) 

filtering and quantification 

homology links between co-

expression clusters 

Statistical model (5) no no permutation test no permutation test 

Bio-classification, functional 

annotation 

GO (terms linked to AMIGO), 

Entrez ID, interaction data 

(protein, DNA, RNA) 

GO (Biological Process), KEGG 

PATHWAYS, KaPPA-View 4, and 

biological processes of Gene 

Ontology 

MapMan, phenotype GO, InterPro, KEGG, 

phenotype 

GO, Reactome, MapMan 

Functional enrichment analysis hypergeometric distribution + 

Bonferroni correction 

no fisher exact test + 

Benjamini-Hochberg 

correction 

fisher exact test hypergeometric distribution 

+ Benjamini-Hochberg 

correction 

Reference (Jupiter et al., 2009) (Ogata et al., 2010) (Mutwil et al., 2011) (Ficklin & Feltus, 2011) (Movahedi et al., 2011) 

Algorithm available (6) no no yes no no 
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Website cross-species co-

expression clusters 

http://vanburenlab.medicine.tamh

sc.edu/starnet2.html 

http://webs2.kazusa.or.jp/kagia

na/cop0911/ 

http://aranet.mpimp-

golm.mpg.de/ 

not available not available 

Visualization (7) Graphviz SVG Graphviz   Cytoscape  

Comment HeatSeeker cross-species analysis 

using color maps 

 meta-network of co-

expression clusters 

comparison of functional 

enrichments between co-

expression clusters using 

Kappa 

integration data about  

tissue specificity, protein 

evolution (Ka) and promoter 

cis-regulatory elements 

 1 
1) GEO: Gene Expression Omnibus 2 
2) RMA: Robust Multichip Average; CDF: Chip Description File; MAS: Affymetrix Micorarray Suite 3 
3) PCC: Pearson Correlation Coefficient 4 
4) NVN: node vicinity network; HCCA: heuristic cluster chiseling algorithm; WGCNA: weighted correlation network analysis; RMT: random matrix theory 5 
5) ECC includes the construction of a null model controlling for network connectivity or tissue specific expression 6 
6) PLANET: http://aranet.mpimp-golm.mpg.de/download/ 7 
7) SVG: Scalable Vector Graphics 8 
 9 
 10 
 11 
 12 
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Figure legends 1 

 2 

Figure 1. Overview of publicly available expression data for different plant species. White and black 3 

bars indicate for each species the number of Affymetrix GeneChip microarray experiments (CEL files) 4 

in the NCBI Gene Expression Omnibus database and the number of Transcriptome experiments from 5 

the NCBI Short Read Archive (SRA), respectively. Values below the species name indicate the number 6 

of available CEL files and Transcriptome SRA experiments (November 2011), respectively. 7 

 8 

9 
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 1 

Figure 2. Workflow for cross-species expression network analysis. Asterisk above the gene-2 

experiment matrix indicate potentially redundant experiments which can cause a sample bias when 3 

computing gene expression similarities. In the co-expression graph circles denote genes while lines 4 

indicate expression similarity. Black co-expression lines indicate the first neighbors of the gray query 5 

gene (gene-centric cluster) while gray co-expression lines indicate the indirect neighbors (extended 6 

node vicinity). Blue lines indicate homologous gene relationships which, when superimposed on the 7 

co-expression networks, indicate conserved gene modules.  8 

9 



 24

 1 
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Figure 3. Plant orthologs with conserved co-expression. (A) Co-expression context analysis for the 1 

Arabidopsis ETG1 gene and its orthologs in poplar and rice (based on PLAZA 2.0 annotations). Grey 2 

edges represent co-expression links between ETG1 (query gene) and its top 50 coexpressed genes, 3 

weighted by the PCC value. Red dashed edges denote protein-protein interactions, black add-ons are 4 

used to indicate genes with known GO annotations for cell cycle and/or DNA replication, and blue 5 

edges depict orthology. The inset displays a histogram of the ECC background model (expected 6 

number of shared orthologs for random clusters with equal sizes as real co-expression clusters) while 7 

the arrows indicate the ECC scores for the different ETG1 co-expression context comparisons.  (B) 8 

Systematic evaluation of orthology and conserved co-expression using the ECC method for a set of 21 9 

homologs (encoding ubiquitin-activating enzyme E1) from Arabidopsis, grape, Medicago, maize, 10 

poplar, rice and soybean (AT, VV, MT, ZM, PT, OS and GM prefixes, respectively). Groups of 11 

inparalogous genes are indicated using dashed vertical lines. Upper-left triangles denote the 12 

sequence-based orthologous relationship between the genes, with a darker shade of blue indicating 13 

a higher number of evidence types reported by the PLAZA 2.0 Integrative Orthology approach. The 14 

lower-right yellow triangles denote gene pairs with significant ECC scores (p-value < 0.05), white 15 

triangles represent gene pairs lacking a significant number of hared orthologs (p-value ≥0.05) and 16 

darker shades of yellow indicate a higher fraction of shared orthologs. Arced sections denote missing 17 

expression data for at least one of  the genes. ECC scores are only computed between genes from 18 

different species. 19 

 20 

 21 


